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Abstract
Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells
(MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional
recovery in experimental models of spinal cord injury (SCI). Although IV delivered
MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs)
derived fromMSCs (MSC-sEVs) do and are taken up by a subset ofM2macrophages.
To test whether sEVs released by MSCs are responsible for the therapeutic effects of
MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs)
after transplantation into SCI rats. We found that sEVs were released by MSCs in
vivo, trafficked to the injury site, associated specifically with M2 macrophages and
co-localized with exosome markers. Furthermore, while a single MSC injection was
sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3
days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs
mimicked the effects of single dose MSC infusion on multiple parameters includ-
ing: increased expression of M2 macrophage markers, upregulation of transforming
growth factor-beta (TGF-β), TGF-β receptors and tight junction proteins, and reduc-
tion in BSCB permeability. These data suggest that release of sEVs byMSCs over time
induces a cascade of cellular responses leading to improved functional recovery.
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 INTRODUCTION

Traumatic spinal cord injury (SCI) results in persistent functional deficits below the level of the injury. The pathophysiology
of SCI is complex and includes neuronal death, axon severing, loss of oligodendrocytes which myelinate axons and secondary
changes which affect repair of the damaged CNS tissue and influence recovery. Reactive astrocytes form a glial scar and pro-
duce chondroitin sulfate proteoglycans (CSPGs) that can inhibit axonal growth (Bradbury et al., 2002) as do other endogenous
inhibitory molecules that cause growth cone collapse (Schwab & Strittmatter, 2014). Pericytes detach from endothelial cells and
migrate into the scar area (Goritz et al., 2011; Matsushita et al., 2015), disrupting the integrity of the blood-spinal cord barrier
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(BSCB), increasing vascular permeability altering the local microenvironment and facilitating entry of peripheral immune cells
into the CNS parenchyma (Beck et al., 2010).

Macrophages, in particular, dominate the lesion core within a week after injury and play both positive and negative roles in
tissue repair and recovery (Beck et al., 2010; Milich et al., 2019). Macrophages represent heterogeneous populations of cells with
an array of different subtypes based on gene expression (Chen et al., 2019). However, macrophages are typically classified as
either M1, a classically Th1-activated proinflammatory macrophage, or as M2, an alternatively Th2-activated anti-inflammatory
macrophage (Kigerl et al., 2009).M1macrophages are characterized by expression of iNOS and release of tumour necrosis factor-
alpha (TNF-α), whileM2 anti-inflammatorymacrophages are characterized by expression of CD206 and release of transforming
growth factor-beta (TGF-β). M2macrophages are also highly phagocytic. The persistence of a proinflammatoryM1macrophage
phenotype in spinal cord lesions (Kigerl et al., 2009), which is typically not observed at injury sites with more complete wound
repair and healing (Krzyszczyk et al., 2018), suggests that pro-inflammatory M1 macrophages may inhibit recovery after SCI,
while an M2 phenotype may promote wound healing (Mantovani et al., 2013).
Numerous studies have demonstrated that intravenous (IV) infusion ofmesenchymal stem/stromal cells (MSCs) derived from

bone marrow can improve locomotor recovery in experimental models of SCI (Chopp et al., 2000; Honmou et al., 2012; Oliveri
et al., 2014; Osaka et al., 2010; Sasaki et al., 2009). MSC infusion reduced lesion volume (de Almeida et al., 2015; Osaka et al.,
2010; Urdzikova et al., 2014), accelerated restoration of the BSCB (Matsushita et al., 2015), increased neovascularization (Morita
et al., 2016; Quertainmont et al., 2012), conferred neuroprotection (Sasaki et al., 2009; Spejo et al., 2013) and increased axon
sprouting (Quertainmont et al., 2012; Sasaki et al., 2009). Importantly, the therapeutic effects of intravenous MSC delivery have
been observed after both acute (Matsushita et al., 2015; Osaka et al., 2010) and chronic (Morita et al., 2016) SCI. Clinical trials of
bone marrow-derived MSC treatment for both spinal cord injury (Honmou et al., 2021) and stroke (Honmou et al., 2011) have
been carried out. However, we (Matsushita et al., 2015) and others (Quertainmont et al., 2012) have found that IV deliveredMSCs
do not appreciably target the lesion site, lodging instead in the lungs where they survive for a few days, arguing that therapeutic
actions of MSCs may be mediated by release of cellular products which travel to the injury site.
MSCs produce a wide array of trophic (Chen et al., 2002; Hamano et al., 2000; Mayer et al., 2005; Whone et al., 2012) and

anti-inflammatory factors (Prockop & Oh, 2012), and also are known to secrete protein and RNA-containing small extracellular
vesicles (sEVs) or exosomes (Chen et al., 2010;Witwer et al., 2019; Yeo et al., 2013) which have therapeutic effects in rodentmodels
of very acute SCI (Huang et al., 2017; Ji et al., 2019; Lu et al., 2019; Wang et al., 2018). We previously demonstrated that IV delivery
of sEVs characterized as exosomes from bone marrow-derived MSCs (MSC-sEVs) traffic to the injury site and target M2-type
macrophages in the injured spinal cord (Lankford et al., 2018). We hypothesized that secretion and circulatory transport of sEVs
produced by MSCs lodged in the lungs contribute to the therapeutic efficacy of MSCs (Lankford et al., 2018; Matsushita et al.,
2015). Since sEVs are smaller and more stable and storable (Sokolova et al., 2011) than living cells, infusion of MSC-derived sEVs
could obviate many potential problems associated with cell infusion (Volarevic et al., 2018).
Here we report that sEVs are secreted in vivo byMSCs and travel to the lesion site, as evidenced by the presence of membrane-

labelled (DiR) sEVs within M2 macrophages in the SCI lesion site after IV delivery of DiR-labeled MSCs. A second key finding
is that fractionated dosing of the MSC-sEVs (1/3 total dosage on three consecutive days, F-sEVs), designed to mimic release of
sEVs from MSCs entrapped in the lungs for 2–3 days after IV infusion, was more therapeutically effective than delivery of the
same quantity of sEVs in one single dose (1-sEVs). Furthermore, both MSC and F-sEV infusion resulted in increased expression
ofM2-typemacrophages markers, TGF-β, TGF-β receptors, and keymicrovascular tight junction proteins, as well as a reduction
in vascular permeability.
Our results support a model of therapeutic action of MSCs in which uptake of MSC-sEVs by M2 macrophages at SCI lesion

sites leads to their increased expression of TGF-β and subsequent upregulation of TGF-β receptors and a number of BSCB-related
microvasculature proteins, ultimately leading to stabilization of the BSCB. This improvement in BSCB function may contribute
to functional recovery by producing an environment more conducive to tissue repair and neuronal function. Given that sEVs are
more stable and storable than living cells (Sokolova et al., 2011), MSC-sEVs may represent an advantageous alternative to MSC
therapy, which would allow for greater flexibility in treatment of SCI.

 MATERIALS ANDMETHODS

. Induction of contusive SCI and assessment of functional recovery

All experiments were carried out in accordance with National Institutes of Health guidelines for the care and use of laboratory
animals and the VAConnecticut Healthcare System Institutional Animal Care andUse Committee (IACUC) approved all animal
protocols.
To induce contusive spinal cord injuries, dorsal laminectomies (T9) were performed on adult male Sprague–Dawley rats (185–

215 g) under isoflurane gas anaesthesia, followed immediately by a delivery of 22.5 Newton impact (equal to 225 kilodynes)
with a 2.5 mm tip using the Infinite Horizon (IH) impactor (Precision Systems & Instrumentation, Lexington KY). Appropriate
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postoperative care, including twice-daily bladder expression for up to 7 days, antibiotic treatment (enrofloxacin 0.05 mg/kg/day
SQ), and pain relief (buprenorphine 0.05 mg/kg/day SQ) for 48 h, was provided for all animals. Open-field locomotor function
was assessed using the Basso-Beattie-Bresnahan (B-B-B) score (Basso et al., 1996) by a tester blinded to the treatment. Rats were
scored 2-day presurgery, 3-day post-SCI, 1-week post-SCI, and at weekly intervals thereafter until the time of sacrifice. To assure
the consistency of lesions, animals were included in the study only if they had B-B-B scores of 0 on 3-day and 0.5 on 7-day
post-SCI. A total of 182 surgical animals were used for these experiments with an additional 12 unoperated controls.

. MSC culture, MSC-sEVs isolation and characterization

MSCs were isolated from the bone marrow of young adult Sprague-Dawley rats (150-200 g) or green fluorescent protein (GFP)
transgenic rats (CZ-004, SD-Tg (Act- EGFP) CZ-004Osb; SLC, Shizuoka, Japan) cultured and passaged 4 times as previously
described, (Osaka et al., 2010) before detaching for cell transplantation or changing to serum-free media (Dulbecco’s Modi-
fied Eagle Medium (DMEM) with glutamate and penicillin/streptomycin) for collection of sEVs. No differences were observed
between the efficacy of MSC-sEVs from GFP rats and nontransgenic littermates.
MSC-sEVs were isolated from 2-day serum-free conditioned media from MSC cultures using the differential centrifugation

method (Lankford et al., 2018; Thery et al., 2006). Protein content was assessed using a Bradford protein assay kit (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and Synergy HT plate reader (Bio-Tek Instruments Inc., Winooski, VT, USA). For
visualization ofMSC-sEVs, a sample of the sEVpreparationwas examinedwith transmission electronmicroscopy as described in
Lankford et al. (2018). The composition of exosome fractionswas also evaluated in the two samples by nanoparticle tracking anal-
ysis (NTA) employing SALD-7500nano (Shimadzu Co., Kyoto, Japan) using triton detergent extraction methods (Osteikoetxea
et al., 2015). Briefly, Triton-X100 (Sigma-Aldrich) was added toMSC-sEVs containing samples with different final concentrations
(0.025% and 0.075%), vortexed for 30 s, and analysed by SALD-7500nano. All steps of detergent lysis were conducted at room
temperature. Protein markers of exosomes were assessed in three samples of MSC-sEVs and corresponding MSCs by western
blotting (see the section of Western blots). Gene expression of miRNA-21 was also analysed using three MSC-sEVs samples (see
the section of Real-time quantitative PCR).
To trace trafficking of MSC-sEVs from IV infused MSCs, dissociated non-GFP expressing MSCs were labelled with the flu-

orescence lipophilic tracer, DilC18(7);1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricbocyanine iodide (DiR) (Molecular Probes,
Grand Island, NY, USA) for 10 min, and washed three times with DMEM before infusion. To observe MSC-sEVs uptake in vitro,
attached MSCs were labelled with DiR for 10 min, allowed to recover for 4 h in control media, and washed three times with
phosphate-buffered saline (PBS) before changing to serum-free collection media for 48 h and isolation of MSC-sEVs from the
conditioned media.

. Infusion of MSCs and MSC-sEVs

On 7-day post-SCI, MSCs or MSC-sEVs suspended in 1 ml DMEM, or DMEM alone, were infused via the femoral vein of
isoflurane-anesthetized rats over the course of 1 min, with bupivacaine liposome (5.3 mg/kg SQ) administered post-surgery for
pain relief. On 8- and 9-day post-SCI, 0.2mlDMEMalone or 1/3 doseMSC-sEVs in 0.2mlDMEMwas infused via the saphenous
vein. The total dosage of sEVs for both the one- dose (1-sEVs) and fractioned dose (F-sEVs) conditions represented the quantity of
sEVs isolated as above from 2-day serum-free conditionedmedia from approximately 2 × 106-MSCs (approximately 4.6± 0.5 μg
protein or 2.5 × 109-MSC-sEVs as estimated by protein assay and NanoSight LM10, NanoSight Ltd., Minton Park, Amesbury,
UK). For the F-sEVs condition, sEVs were delivered as 3 doses of 1/3 each of the quantity ofMSC-sEVs from the sameMSC-sEVs
isolation preparation (8.3 × 108-MSC-sEVs). Thus, SCI rats were randomized into one of four conditions, DMEM vehicle only
infusion (Vehicle), a single MSC infusion followed by two DMEM infusions (MSC), one single MSC-sEVs infusion comparable
to the maximum amount of sEVs that might be expected to be produced by transplanted MSCs over a 2–3 day period followed
by two DMEM infusions (1-sEV), or infusion of 3 fractionated doses of sEVs at 1/3 each of the single sEVs infusion on three
consecutive days (F-sEVs). See Figure 1. The experimenter performing infusions was naïve with respect to transplant contents
and all subsequent analysis was performed blinded until the data was collected.
To assess trafficking of sEVs from transplanted cells, DiR-labeled MSCs were administered at five times the standard dose (5

× 106 DiR-labeled MSCs) and animals were sacrificed after 48 h for histological examination.

. Histological analysis

Rats were deeply anesthetized with sodium pentobarbital, perfused with saline, followed by 4% paraformaldehyde in 0.1 M
phosphate buffer, and processed for standard frozen sectioning. Coronal (20 μm) sections taken at 1.5 mm from the centre
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F IGURE  Experimental protocol, characterization of MSC-sEVs, and effects of MSC-derived sEVs infusion on functional recovery. a, Representative
electron microscopic image of an sEV preparation showing the sizes and morphology of particles. Scale bar = 100 nm b, Histogram of the size distribution of
sEVs. c, Histograms of size distribution of sEVs exposed with 0.025% Triton X-100 (red) and 0.075% Triton X-100 (blue). d, Expressions of CD 9, CD 63, and
Alix in sEVs derived fromMSCs were evaluated by western blotting and compared to equal concentrations of proteins from their MSCs. e, Micro RNA 21 was
detected within MSC-sEVs tested with primers targeting for rno-miR-21-5p. The threshold cycle (Ct value) was evaluated using three exosome samples. f,
Experimental protocol. Animals were randomly assigned to one of 4 treatment groups: 1) vehicle (Vehicle), 2) MSCs (MSC), 3) MSC-sEVs with a single dosing
protocol (1-sEVs), and 4) MSC-sEVs-infused rats with fractionated dosing protocol over the course of 3 days (F-sEVs). g, B-B-B locomotor scores of contused
rats infused with Vehicle (black squares), MSCs (blue circles), or MSC-derived sEVs delivered in a single dose (1-sEVs green upward triangles) or three
fractionated doses over 3 days (F-sEVs red downward triangles). Values are presented as means ± SEM. Repeated- measures two-way ANOVA followed by
Sidak post hoc tests were conducted. *: P < .05 between F-sEVs group and Vehicle group, **: P < .01 between F-sEVs group and Vehicle group, †: P < .05
between MSC group and Vehicle group, ††; P < .01 between MSC group and Vehicle group. MSCs: mesenchymal stem/stromal cells, B-B-B score:
Basso–Beattie–Bresnahan locomotor scale score, EvB: Evans blue leakage analysis, qRT-PCR: quantitative reverse transcription-polymerase chain reaction,
WB: Western blotting, IHS: Immunohistochemical staining. Particle sizes, stability to detergent degradation, and tetraspanin expression were consistent with
sEVs. MSC: mesenchymal stem/stromal cell, sEVs: small extracellular vesicles, MSC-sEVs: small extracellular vesicles derived fromMSCs

of each block were stained with two or more of the primary antibodies (Supplementary Table 1) diluted in 0.01% Triton X-100,
5% fishskin gelatin (0.1 M PBS) blocking buffer, visualized with species-specific secondary antibodies (Supplementary Table.1)
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) mounting media (Vectashield, Vector Laboratories, Burlingame,
CA, USA) and photographed with a Nikon A1R multiphoton confocal microscope with NIS Elements software (Nikon, Tokyo,
Japan).
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. In vitro uptake of MSC-sEVs by macrophages

Macrophages were isolated from bone marrow of 6 weeks old SD rats as described in Ying et al. (Ying et al., 2013), plated on 8
well multichambered slides (Falcon 354108) at 100,000 cells per well in macrophage growth media consisting of IDMEM with-
out HEPES (Sigma-Aldrich I3390), with 10% heat-inactivated foetal calf serum and 10 ng/ml colony-stimulating factor (CSF)
(Sigma-Aldrich, # SRP3332) and fed every 2–3 days. After 7–10 days, growthmedia was replaced withM1 orM2 inductionmedia
containing either 100 ng/ml LPS (Sigma-Aldrich, L2630) plus 50 ng/ml interferon-gamma (Sigma-Aldrich, I3257) or 10 ng/ml
interleukin 4 (Sigma-Aldrich, I3650) respectively without CSF, at normal pH or a pH of 6. Two days after transfer to M1 or M2
phenotype induction media, 1 μl of a central myelin enriched fraction (Lankford et al., 2017) was added to half of the wells to
induce phagocytosis. DiR-labeled MSC-sEVs were added to wells three days after transfer to induction media. After 24 h, cul-
tures were washed 3 times with plain IDMEM, fixed with 4% paraformaldehyde and stained with antibodies directed against
CD206 and iNOS, visualized with fluorescent 488 and 594 wavelength secondary antibodies, counterstained with DAPI mount-
ing media, examined, and photographed with a Nikon A1R multiphoton confocal microscope with NIS Elements software as
above (Supplementary Table.1).

. Western blots

Animals were sacrificed under deep anaesthesia with sodium pentobarbital. Spinal cords were removed and stored -70◦C, and
total protein and RNAwere purified from a homogenized 8mm (30mgwet weight) segment of spinal cord tissue centred around
the impact sites using the AllPrepDNA/RNA/ProteinMini Kit (QIAGEN, Venlo, TheNetherlands). Protein was quantified using
a BCA protein assay (Thermo Fisher Scientific Inc), and equal amounts were loaded and run on 10% SDS–polyacrylamide gels
(10ug protein/lane), transferred to polyvinylidene difluoride membranes, probed with appropriate primary antibodies (Supple-
mentary Table 1) overnight at 4◦C, followed by secondary antibody staining and visualization with an enhanced chemilumines-
cence detection system (Pierce ThermoScientific) using Luminescent ImageAnalyzer (ChemiDocMP Imaging System, Bio-Rad)
and band density analysis by ImageJ software (NIH, Bethesda, MA, USA). Protein expression of sEVs was also quantified using
a BCA protein assay by loading equal amounts of protein (10ug protein/lane). Polyclonal rabbit anti-rat CD9, CD63, and Alix
antibodies (Supplementary Table 1) were used.

. Real-time quantitative PCR

Total purified RNA from above described samples were quantified with a spectrophotometer (NanoDrop, Technologies Inc.,
Wilmington, DE,USA), and reverse transcription of RNAwas performedwith an iScript cDNASynthesis Kit (Bio-Rad,Hercules,
CA, USA). Quantitative RT-PCR analysis was performed in triplicate using TaqMan® Universal Master Mix II with Uracil-N
glycosylase (UNG) and specific sets of primers and TaqMan probes (Thermo Fisher Scientific Inc.) (Supplementary Table 2)
with a CFX96TM real-time PCR detection system (Bio-Rad), using approximately 20 ng total mRNA for each sample. Thermal
cycling was carried out at 50◦C for 2 min and 95◦C for 10 min, followed by 40 cycles of 95◦C for 15 s and 60◦C for 1 min. Delta
cycle threshold (Ct) (ΔCT) was calculated against the endogenous control (glyceraldehyde 3-phosphate dehydrogenase), and
delta-delta Ct (ΔΔCT) was calculated against the ΔCT of the sham. Fold change (FC) was calculated using the comparative Ct
method (Schmittgen & Livak, 2008).
To assess gene expression of miRNA 21 inMSC-sEVs, three samples of MSC-sEVs were analysed. Purified RNAwas extracted

from MSC-sEVs samples and reverse transcription of RNA was performed with a miRNeasy Serum/Plasma Advanced Kit
(Qiagen). Quantitative RT-PCR analysis was performed in triplicate using TaqMan Fast Advanced Master Mix and a specific
primer for miRNA 21 (rno481342_mir) (Thermo Fisher Scientific Inc) with a CFX96TM real-time PCR detection system. Ther-
mal cycling was carried out at 95◦C for 20 s, followed by 40 cycles of 95◦C for 3 s and 60◦C for 30 s. Cycle threshold was
measured.

. Evans blue (EvB) dye extravasation

On 10- and 14-day post-SCI, 4%EvB in saline (2.5mg/kg; Sigma)was administered via the femoral vein of isoflurane-anesthetized
rats. Two hours after the EvB infusion, rats were deeply anesthetized with sodium pentobarbital, transcardially perfused with
ice-cold PBS, and 1 cm segments of spinal cords centred around the impact were removed, weighed, homogenized in 50%
(w/v) trichloroacetic acid, centrifuged, and the absorbance of the supernatant measured at 620 nm (Synergy HT multilabel
plate reader) to calculate dye concentrations from a standard curve(Matsushita et al., 2015; Morita et al., 2016; Nakazaki et al.,
2017).
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. Statistical analysis

All statistical analyses were performed using GraphPad Prism software (version 9.0) and R (version 4.0.0). Repeated-measures
two-way ANOVA followed by Sidak post hoc tests were conducted for multiple comparisons of B-B-B scores. Continuous data
were analysed by 1-way ANOVA or the Kruskal-Wallis test. The Tukey-Kramer test or Steel-Dwass test were used to compare the
subgroups. All P values < .05 were considered statistically significant. All values shown here are expressed as mean ± SEM. All
methods and data were reported with consideration of guidelines provided by Animals in Research: Reporting in Vivo Experi-
ments (ARRIVE)(Kilkenny et al., 2010) andMinimum Information about a Spinal Cord Injury Experiment (MIASCI) (Lemmon
et al., 2014).

 RESULTS

. Characterization of MSC-sEVs

Transmission electron microscopy of sEV preparations revealed large numbers of vesicles in the 30–100 nm diameter size range
characteristic of exosomes (Figure 1a). Consistent with previous characterizations (Jeppesen et al., 2019), particle sizes in our
MSC-sEVs samples, measured by nanoparticle tracking analysis, ranged from 25 to 140 nm (mean 83.0± 14.1 nm; n= 3 samples)
(Figure 1b). Particle numbers were not significantly reduced by exposure to 0.025% Triton X-100, which has been demonstrated
to lyse and degrade other types of vesicles, including microvesicles and apoptotic bodies (Osteikoetxea et al., 2015), but particles
larger than 60nm indiameterwere effectively eliminated by 0.075%TritonX-100,which disrupts exosomemembranes (Figure 1c)
(Osteikoetxea et al., 2015). Western blots showed that three characteristic surface marker proteins of exosomes, CD63, CD9,
and Alix, were all greatly enriched in the sEVs samples compared to equal concentrations of proteins from their MSC sources
(Figure 1d). Quantification ofmiR-21microRNAs confirmed theMSC-sEVs preparations had significant levels of thismicroRNA,
which is known to represent a significant fraction of the micro-RNA in MSC-derived exosomes (Figure 1e). These results are
consistent with the samples designated as sEVs in this study containing large numbers of exosomes (Jeppesen et al., 2019).

. Both MSC infusion and fractionated MSC-sEVs promote functional recovery after SCI

To assess the relative therapeutic efficacy of MSCs andMSC-sEVs on functional recovery after SCI, rats were randomly assigned
to one of four treatment groups at 1-week post-contusion: Vehicle group, MSC group (1 × 106 MSCs delivered in one dose),
1-sEVs group (MSC-sEVs delivered as one dose treatment with a quantity of MSC-sEVs intended to approximate the greatest
quantity of sEVs which might be released by MSCs surviving transiently post-infusion), and F-sEVs group (MSC-sEVs of the
same quantity as the one dose condition delivered in 3 fractions of 1/3 total on each of three successive days) (Figure 1f).

Weekly blinded evaluations of locomotor function showed improvement in the B-B-B locomotor rating scale (Basso et al.,
1996) in the F-sEVs group (n= 14), relative to the Vehicle group (n= 17) beginning 2-week post-contusion (1-week after onset of
treatment) and in theMSC group (n= 14) beginning 3-week post-SCI (Figure 1 g). At 10-week post-SCI, animals in theMSC and
F-sEVs groups exhibited average B-B-B scores of 8.54 ± 0.86 and 7.96 ± 0.83, respectively, which were greater than the Vehicle
group (4.74 ± 0.67). MSC and F-sEVs B-B-B scores differed from controls at P < .05 and P < .01, respectively. Animals in the
1-sEVs group (n= 14) showed only a trend towards improved functional scores and did not differ from controls at any timepoint,
with an average B-B-B score of 6.25 ± 0.77 at 10-week post-SCI.

. sEVs are released by IV infused MSCs and are taken up by M macrophages at the SCI site

To test the hypothesis that IV infused MSCs release sEVs which can traffic to SCI lesion sites, we intravenously delivered DiR-
labeledMSCs (5× 106) 1-week post-contusion and examined the spinal cord 2 days after cell infusion (Figure 2a). NoDiR-labeled
MSCs were detected at the SCI lesion sites in animals infused with DiR-MSCs, as evidenced by a lack of cells exhibiting DiR
wavelength fluorescence in the lesion (Figure 2b). However, large numbers of punctate ‘hotspots’ of DiR wavelength fluorescence
were detected at SCI sites. Consistentwith our previous observations ofDiRhotspot distributionwithin lesions in animals infused
with DiR-labeled sEVs. DiR hotspots in DiR-MSC infused animals were localized predominantly to cells along the edges of the
lesions (Figure 2b-f). Co-staining with antibodies directed against theM2marker CD206 and the exosomemarker CD63 showed
that themajority of theseDiR hotspots were localizedwithin CD206+M2macrophages and also stainedwith CD63 (Figure 2c-f),
and this intracellular localization could be confirmed when z stack images for individuals cells were rotated (Figure 2c1-f1). These
findings support the hypothesis that IV infused MSCs, which do not themselves reach the injury site, release exosomes that can
be taken up by M2-type macrophages at the lesion site.
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F IGURE  M2 macrophages take up DiR-labeled MSC-sEVs in vivo at the lesion site after intravenous infusion of DiR-labeled MSCs and in vitro after
exposure to DiR-labeled MSC-sEVs. a, Experimental protocol for tracking the MSC-sEVs released from IV infused DiR-labeled MSCs in vivo. b, Confocal
micrographs of a representative region of a frozen sectioned contused spinal cord harvested 48 h after IV infusion of DiR-labeled MSCs, immunostained with
antibodies directed against M2 macrophage marker CD206 (red) and DAPI (blue). Scale bars indicate 100 μm. c-f, Images of a representative region of the
white square in the figure. c, immunostained with antibodies directed against CD206 (red) and exosomes marker CD63 (green) counterstained with DAPI
(blue) with DiR visualized as cyan. Images from left to right show the same area showing fluorescence channels for c, CD206, CD63, DAPI, & DiR, d, CD206, e,
CD63, and f, DiR. Images in c1-f1 show enlarged images of the boxed area above rotated and illustrated in 3D. Note the strong co-localization of DiR
fluorescence with CD206, suggesting that the majority of these DiR hotspots were localized within CD206+ M2 macrophages. Scale bars in c-f and c1-f1
indicate 20 μm and 10 μm, respectively. Note that although the labelled MSCs themselves were not detected at the lesion site DiR- labelled hotspots co-staining
with exosome markers were. g-j Confocal micrographs of a representative region of rat bone marrow macrophage cultures stimulated to induce a phagocytic
M2 phenotype with IL-4 and central myelin enriched fraction and fixed 24 h after the addition of DiR-labeled MSC-sEVs at pH= 6. Cultures were stained with
antibodies directed against CD206 (red), iNOS (green), and counterstained with DAPI (blue) with DiR fluorescence visualized as Cyan. Images from left to
right show: (g) CD206, iNOS, DAPI, & DiR, (h) CD206 & DiR, (i) DiR only, and (j) rotated 3D reconstructions of the boxed area indicated in (g-j) containing 3
CD206+ presumptive M2 macrophages and one CD206– and iNOS– presumptive M0 macrophage (left). Note that the two cells in the centre of the group
appear largely filled with DiR fluorescence hotspots, while both the cells on the left and on the right do not appear to have taken up significant quantities of
exosomes. Scale bars in (i) and (j) indicate 50 μm. MSC: mesenchymal stem/stromal cell, MSC-sEVs: small extracellular vesicles derived fromMSCs, DiR:
DilC18(7);1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricbocyanine iodide, DAPI: 4′,6-diamidino-2-phenylindole, iNOS: inducible nitric oxide synthase
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In vitro studies confirmed that bone marrow macrophages could take up labelled sEVs under certain conditions. When DiR-
labeled MSC-sEVs were added to IL-4 stimulated, predominantly M2-type macrophages, in pH6 media with a central myelin
enriched fraction (CMEF) added to induce phagocytosis, hotspots of DiR wavelength fluorescence were readily apparent in
CD206+ macrophages 24 h later (Figure 2 g-j). Three-dimensional rotation showed that the “clouds” of DiR fluorescence were
within the macrophage cell bodies and not on the cell surface (Figure 2j). Cells stimulated to anM1 phenotype, cultured at a pH7
or at pH6 without the addition of CMEF, did not show a detectable uptake of DiR-labeled exosomes (not shown), suggesting that
MSCexos uptake was specific to M2 macrophages and was dependent on local environmental factors.

. Both infusion of MSCs and fractionated dosing of MSC-sEVs promote M macrophage
polarization after SCI

Immunostaining of macrophages at lesion sites and quantification of macrophage subtype specific genes and proteins revealed
an increase in M2 specific markers relative to M1 specific markers in both the MSC and F-sEVs groups 1-week post-treatment.
Large numbers of macrophages were detected at lesion sites for all treatment groups 7-day post-treatment (14-day post-SCI).
However, while the proportion of macrophages staining positive for the M1 marker iNOS and the M2 marker CD206 appeared
approximately equal in the Vehicle and one dose 1-sEVs groups, we observed a strong predominance of cells staining positive for
the M2 marker CD 206 relative to the M1 marker iNOS in the MSC and fractioned dosing F-sEVs groups, (Figure 3a-d).
Consistent with gross visual impressions of staining for macrophage subtypes, western blot analysis showed increases in

macrophage markers in all contused spinal cords relative to intact controls, as well as increases in M2 markers, relative to M1
markers, in both MSC and F-sEVs treatment conditions, when compared with the control or 1-sEV treated conditions. Both
iNOS (Figure 3e, f) and CD206 (Figure 3e, g) protein levels were increased in all lesion conditions (n = 6-7/group), relative to
intact controls, at 1-week post-treatment (14 post-SCI), and modestly elevated at 70-day post-contusion. However, 1-week post-
treatment, the levels of iNOS were significantly lower and CD206 levels were significantly higher in theMSC and F-sEVs groups,
compared to Vehicle, while the 1-sEVs group showed a similar trend but did not differ statistically from the Vehicle group. This
resulted in a statistically significant decrease in the M1/M2 macrophage ratios in both the MSC and F-sEVs treatment groups
relative to Vehicle treated controls, while the 1-sEVs group showed only a trend in this direction (Figure 3h).

Gene expression analysis revealed no statistically significant differences between the levels of mRNA for the M1 marker CLL2
at any timepoint studied (n= 7-9/group) (Figure 3i) and no differences in mRNA expression levels for the M2 marker CD206 at
3-day post-treatment (10-day post-SCI) (Figure 3i). However, levels of CD206mRNAwere significantly increased in theMSC and
F-sEVs conditions at both 14- and 70-day post-SCI (Figure 3j). This resulted in statistically significant reductions in the M1/M2
mRNA ratios in the MSC and F-sEVs treatment conditions at both 14-day and 70-day post-SCI (Figure 3k). Gene expression
levels of the M2marker arginase-1 were also significantly increased in both the MSC and F-sEVs group, compared to the Vehicle
group (Supplementary Figure 1a), whereas the gene expression level of the M1-related cytokine, TNF-α, showed no statistically
significant difference between treatment groups at 14-day post-SCI (Supplementary Figure 1b).

. Both infusion of MSCs and fractionated dosing of MSC-sEVs upregulate TGF-β and TGF-β
receptors in the injured spinal cord

As M2 macrophages are well known to secrete TGF-β (Freytes et al., 2013; Hu et al., 2015), we attempted to assess whether
the TGF-β signalling pathway was upregulated by MSCs or MSC-sEVs infusion in this model. Examination of immunostained
sections 7-day post-treatment revealed that TGF-β1 staining was low within macrophages at lesion sites of animals in the Vehicle
treated group (Figure 4a-c), while noticeably stronger TGF-β1 staining was observed within CD206+ M2macrophages at lesion
sites in the F-sEV treated group (Figure 4d-f). Although staining for TGF-β1 was stronger within CD206+ cells in the F-sEVs
treatment group (Figure 4d-f) than in the Vehicle group (Figure 4a-c), no apparent differences were observed for TGF-β1 staining
intensity in astrocytes or other cells in the region, which exhibited low levels of staining under all treatment conditions (not
shown). Consistent with the increased number of macrophages observed at the lesion sites throughout the study period and
the apparent high levels of TGF-β1 within macrophages, levels of both TGF-β1 and TGF-β2 mRNA were increased in all lesion
conditions, relative to intact control spinal cords at all timepoints studied (Figure 4 g, h). Furthermore, three days after the onset
of treatment (10-day post-SCI), the expression of TGF-β1 mRNAwas significantly increased in both theMSC and 1-sEVs groups,
compared to the Vehicle group (Figure 4 g, n = 7-10/group). At this timepoint, there was no statistically significant increase in
TGF-β1 or TGF-β2 in the fractionated treatment F-sEVs group relative to the Vehicle group (Figure 4 g, h), althoughTGF-β levels
showed a trend towards an increase at this time. At 1 week post-treatment (14-day post-SCI), however, the pattern of TGF-β gene
expression changed. At 14-day post-SCI, levels of TGF-β1 mRNA were significantly increased in the MSC and F-sEV treated
conditions compared to Vehicle, while the 1-sEVs group did not differ from the Vehicle treatment (Figure 4 g). Notably, levels
of TGF-β1 mRNA were three-fold higher in the F-sEVs condition than in the 1-sEVs and Vehicle conditions at 14-day post-SCI.
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F IGURE  Intravenous infusion of MSCs and fractionated dosing of MSC-sEVs promote M2 macrophage polarization in the injured spinal cord. a1-3
-d1-3, Confocal micrographs of a representative region of a frozen sectioned contused spinal cord harvested 7 days after the treatment (14-day post-SCI),
immunostained with antibodies directed against Type M1 macrophage marker iNOS (green), Type M2 macrophage marker CD206 (red), and counterstained
with DAPI (blue). Scale bar in a indicates 50 μm. e, Representative images of western blot of the lesion site harvested at 7 days after the treatment (14-day
post-SCI), immunostained with antibodies directed against Type M1 macrophage marker iNOS, Type M2 macrophage marker CD206, and GAPDH as a
control. f and g, Graphs of quantitative density analysis for western blot results for iNOS (f) and CD 206 (g) in each treatment condition normalized to control
spinal cords. h, M1/M2 macrophage protein expression ratios calculated using quantitative density analysis of western blot data for iNOS and CD206. i and j,
qRT-PCR analysis of relative mRNA expression levels for M1 macrophage marker CLL2 (i) and M2 macrophage marker CD206 (j). [ΔCT was calculated
against the endogenous control (GAPDH), and ΔΔCT (mRNA level) was calculated against the ΔCT of the control.] k, M1/M2 macrophage mRNA ratios
calculated by using qRT-PCR results for CLL2 and CD206. Values are presented as means ± SEM. A 1-way ANOVA followed by the Tukey-Kramer test or the
Kruskal-Wallis test followed by the Steel-Dwass test was conducted. *: P < .05, **: P < .01, SCI: spinal cord injury, MSC: mesenchymal stem/stromal cell,
MSC-sEVs: small extracellular vesicles derived fromMSCs, iNOS: inducible nitric oxide synthase, DAPI: 4′,6-diamidino-2-phenylindole, GAPDH:
Glyceraldehyde 3-phosphate dehydrogenase, CCL2: C–C motif chemokine ligand 2, ΔCT: delta-cycle threshold, qRT-PCR: quantitative reverse
transcription-polymerase chain reaction, FC: fold change
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F IGURE  Both infusion of MSCs and fractionated dosing of MSC-sEVs upregulate TGF-β in the injured spinal cord. a-f, Confocal micrographs of
representative regions of frozen sectioned contused spinal cord harvested 14-day post-SCI and 7 days after the treatment with Vehicle (a-c, left) or fractioned
MSC-sEVs (d-f, right), immunostained with antibodies directed against Type M2 macrophage marker CD206 (red), and TGF-β1 (green), and counterstained
with DAPI (blue). Images in each group (a-c, and d-f) from left to right show the same area with fluorescence channels for CD206, TGF-β1, & DAPI (a and f),
CD206 (b and e), and TGF-β1 (c and f). Note that TGF-β1 staining is strongly expressed and localized within macrophages staining positive for the M2 type
marker in the F-sEVs group, while such staining is negligible in the Vehicle group. Scale bars indicate 20 μm (c and f) and 10 μm (c1 and f1). g and h, Graphs
illustrating the qRT-PCR analysis of the relative expression of mRNAs for TGF-β1 (g) and TGF-β2 (h). [The ΔCT was calculated against the internal control
(GAPDH), and ΔΔCT (mRNA level) was calculated against the ΔCT of the control.] Note the transient upregulation of TGF-β1 at 10-day post- SCI in the
1-sEVs treatment group, compared with the upregulation of TGF-β1 and TGF-β2 expression in both the MSC and the F-sEVs treatment groups at 14-day
post-SCI. Values are presented as means ± SEM. A 1-way ANOVA followed by the Tukey-Kramer test or the Kruskal-Wallis test followed by the Steel-Dwass
test was conducted. *: P < .05, **: P < .01, TGF: transforming growth factor, MSC: mesenchymal stem/stromal cell, MSC-sEVs: small extracellular vesicles
derived fromMSCs, TGF-β: transforming growth factor-beta, DAPI: 4′,6-diamidino-2-phenylindole, qRT-PCR: quantitative reverse transcription-polymerase
chain reaction, ΔCT: delta-cycle threshold, SCI: spinal cord injury, FC: fold change

This pattern was repeated for TGF-β2 (Figure 4h) gene expression, which was significantly increased in the F-sEVs treatment
condition, compared to all other treatment groups at 14-day post-SCI. By 70-day post-SCI, levels of TGF-β and TGF-β receptor
genes did not differ across treatments.
Immunostaining, mRNA analysis, and protein expression levels also supported an upregulation of TGF-β receptors at the

lesion site in the MSC and F-sEVs treatment conditions, which was potentially linked to the microvasculature. Immunohis-
tochemistry of lesions showed that strong TGF-βR2 immunostaining was observed along capillary vessels of spinal cords in
the F-sEVs group (Figure 5a-d), while such staining was rarely observed in the Vehicle group (not shown). Quantitative PCR
showed that the levels of TGF-βR1 mRNA (Figure 5e) and TGF-βR2 mRNA (Figure 5f) were increased in all lesion condi-
tions relative to intact control cords at almost all timepoints. As with TGF-β1 and TGF-β2, the levels of TGF-βR1 and TGF-
βR2 mRNA did not differ between Vehicle and other treatment groups at 3 days after the onset of treatment (10-day post-SCI)
(Figure 5e, f; n = 7-10/group). At 14-day post-contusion, however, the levels of TGF-βR1 and TGF-βR2 mRNA were almost
four- and five-fold higher in the fractionated treatment F-sEVs group than the one dose 1-sEVs and Vehicle groups, respec-
tively (Figure 5e, f). Western blots also showed a 1.8-fold increase in signal intensities of TGF-βR2 protein in both the MSC
and F-sEVs groups relative to Vehicle at 14-day post-SCI, while the 1-sEVs group did not show an increase in TGF-βR2 protein
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F IGURE  Both infusion of MSCs and fractionated dosing of MSC-sEVs upregulate TGF-β receptors in the injured spinal cord. a-d, Confocal
micrographs of a representative region of a frozen sectioned contused spinal cord harvested 7 days after the treatment with fractioned MSC-sEVs (14-day
post-SCI), immunostained with antibodies directed against endothelial cell marker CD31 (red), PDGFRβ (purple), and TGF-βR2 (green), and counterstained
with DAPI (blue). Images in each group from left to right show the same area with fluorescence channels for CD31, PDGFRβ, TGF-βR2, & DAPI (a), CD31 (b),
PDGFRβ (c), and TGF-βR2 (d). Note that TGF-βR2 is localized along capillaries. Scale bar indicates 20 μm (d) and 10 μm (d1). e and f, Graphs illustrating
qRT-PCR analysis of the relative expression of mRNAs for TGF-βR1(e) and TGF-βR2(f). [The ΔCT was calculated against the internal control (GAPDH), and
ΔΔCT (mRNA level) was calculated against the ΔCT of the control.] g, Representative images of western blots from lesioned tissue harvested 7 days after the
onset of treatment (14-day post-SCI), showing levels of TGF-βR2 protein. h, Quantitative density analysis of western blot results for TGF-βR2. The normalized
ratio was calculated relative to intact controls. Note the upregulation of TGF-βR1, TGF-βR2, and increased TGF-βR2 protein expression in both the MSC and
F-sEVs treatment groups at 14-day post-SCI. Values are presented as means ± SEM. A 1-way ANOVA followed by the Tukey-Kramer test or the Kruskal-Wallis
test followed by the Steel-Dwass test was conducted. *: P < .05, **: P < .01, MSC: mesenchymal stem/stromal cell, MSC-sEVs: small extracellular vesicles
derived fromMSCs, SCI: spinal cord injury, PDGFRβ: platelet-derived growth factor receptor-beta, TGF-βR: transforming growth factor-beta receptor, ΔCT:
delta-cycle threshold, GAPDH: Glyceraldehyde 3-phosphate dehydrogenase, DAPI: 4′,6-diamidino-2-phenylindole, FC: fold change

(Figure 5 g, h, n = 8-10/group). No statistically significant differences in TGF-βR2 protein were observed between treatment
conditions at 70-day post-SCI (Figure 5h).

Overall, SCI lesions in the MSC and F-sEVs groups showed increases in TGF-β production and upregulation of TGF-β recep-
tors over a 1 week period post-treatment. In contrast, we did not observe evidence of acute upregulation of TGF-β signally in
organs including lungs, kidney, liver and spleen at 10-day post-SCI in animals infused with either control vehicle, MSCs orMSC-
sEVs (n= 3 each group, Supplementary Figure 2a-d).We did observe a trend towards an increase in TGF-β and TGF-β receptors
in the brain after the MSC or MSC-sEVs infusion (Supplementary Figure 2e), which would be consistent with the degrada-
tion of ascending axons, but the TGF-β signalling response observed in the brain was much smaller than that in the spinal
cord (1.5-2.0 fold increase in TGF-βR2 in the brain compared to 20–30 fold increase in the spinal cord). Likewise, we saw no
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F IGURE  Both infusion of MSCs and fractionated dosing of MSC-sEVs reduce BSCB leakage in the injured cord. a, Photographs illustrating the typical
appearances of spinal cords of Evans blue injected animals from left to right for the Vehicle-treated group, MSC-treated group, 1-sEV-treated group, and
F-sEV-treated group harvested at 10-day post-SCI (upper row) and 14-day post-SCI (lower row). Note that while no visible differences were apparent between
dye extravasation levels for different treatment conditions at 10-day post-SCI, blue dye at the lesion site was noticeably diminished in both the MSC and F-sEV
treated conditions compared to the 1-sEVs or Vehicle treatment conditions at 14-day post-SCI. Scale bar indicates 3 mm. b and c, Quantification of EvB
concentrations (b) and total dye content (c) of the entire 1 cm segment surrounding the lesion at 10- and 14-day post-SCI. Note: EvB concentration and total
dye content of lesioned tissue were significantly reduced in both the MSC treated and F-sEV treated compared to the Vehicle treated condition at 14-day
post-SCI. Values are presented as means ± SEM. A 1-way ANOVA followed by the Tukey-Kramer test or the Kruskal-Wallis test followed by the Steel-Dwass
test was conducted. *: P < .05, **: P < .01, MSC: mesenchymal stem/stromal cell, MSC-sEVs: small extracellular vesicles derived fromMSCs, SCI: spinal cord
injury, EvB: Evans blue

evidence of upregulation of mRNAs for the fibrotic markers collagen type 1 alpha 1 (Col1a1) or fibronectin 1 (FN1) in lungs or
other organs after infusion of MSCs or MSC-sEVs. Rather, we observed a trend towards slight decreases in fibrotic markers after
SCI in lungs, kidney, liver and spleen in SCI animals under all treatment conditions (Supplementary Figure 2a-e). These obser-
vations argue that MSC-derived sEVs specifically targeted TGF-β signalling in the M2-type macrophages at the lesion site, and
not resident macrophages or TGF-β producing cells in general, and that neither infusions of MSC or sEVs induced significant
fibrotic responses in organs which might cause safety concerns.

. Both infusion of MSCs and fractionated dosing of MSC-sEVs reduce BSCB leakage

To assess whether the MSC-sEVs-induced upregulation of the TGF-β pathway correlated with restoration of BSCB integrity
after SCI, the effects of MSCs andMSC-sEVs treatments on dye extravasation in the injured spinal cord were evaluated. Even by
the naked eye, intense extravasation of EvB dye could readily be observed at impact sites under all lesion conditions at 10- and
14-day post-SCI (Figure 6a). However, while no visible differences were apparent between dye extravasation levels for different
treatment conditions at 10-day post-SCI, dye at the lesion sitewas noticeably diminished in theMSCandF-sEV treated conditions
compared to the 1-sEVs and Vehicle treatment conditions 14-day post-SCI (Figure 6a).
Quantitative analysis of EvB content in a 1 cm segment surrounding the lesion confirmed that dye leakage levels were greatly

increased in all lesion conditions (n = 5-8/group), compared to intact controls, at 10-day post-SCI (Figure 6b, c) and the dye
concentration (Figure 6b) and total dye content (Figure 6c) did not differ significantly between treatment conditions at this time.
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At 14-day post-SCI, however, EvB concentration (Figure 6b) and total dye content (Figure 6c) in lesioned tissue were significantly
reduced in the MSC and F-sEV treated compared to the Vehicle group, (MSC and F-sEVs values differ from Vehicle group at
P< .001). Values for the 1-sEVs group did not differ significantly from the Vehicle group but did differ from theMSC- and F-sEVs
groups (1-sEVs values differ fromMSC and F-sEVs groups at P < .05, and P < .01, respectively.)

Importantly,MSC-sEVs-induced reductions in BSCBpermeability weremuch greater whenMSC-sEVswere delivered in three
fractions over the course of three consecutive days (F-sEVs) than when the same dose of MSC-sEVs was delivered in a single
treatment (1-sEV).

. Both infusion of MSCs and fractionated MSC-sEVs dosing promote increases of tight and
adherens junction proteins

Analyses of expression of both mRNA and protein levels for critical blood-brain barrier/blood-spinal cord barrier (BBB/BSCB)
proteins indicated an upregulation of tight and adherens junction proteins inMSC and F-sEV treated conditions 14-day post-SCI,
but not in the 1-sEVs group.
Gene expression analysis showed that levels of vascular proteins ZO-1 (Figure 7a), occludin (Figure 7b), and N-cadherin (Fig-

ure 7c) mRNA were increased in all SCI treatment groups (n= 7-9/group), relative to the intact condition at 10-, 14- and 70-day
post-SCI, with no significant differences observed between treatment groups at 10-day post-SCI or 70-day post-SCI (Figure 7a-c).
At 14-day post-SCI, however, the gene expression levels of ZO-1 (Figure 7a) and occludin (Figure 7b) began to fall from their
10-day post-SCI levels in the Vehicle and 1-sEVs group, and N-cadherin (Figure 7c) mRNA remained unchanged, while in the
MSC and F-sEVs groups, levels of ZO-1 and occludin held steady and N-cadherin levels increased. This resulted in statistically
significant increases in ZO-1 (Figure 7a), occludin (Figure 7b), andN-cadherin (Figure 7c)mRNA in theMSC and F-sEVs groups
relative to the Vehicle groups at 14-day post-SCI (Figure 7a-c). Themost highly enriched tight junction protein in the BBB/BSCB,
Claudin-5 (Greene et al., 2019), did not show differences in expression levels between treatment groups (Supplementary Figure
3a-b).

Western blot analysis supported the notion that increased gene expression led to increased production of tight and adherens
junctions in MSC and F-sEV treated animals. At 14-day post-SCI, the levels of ZO-1 (Figure 7d, e), occludin (Figure 7f, g),
and N-cadherin (Figure 7h, i) were all significantly increased in the MSC treated condition, and the levels of ZO-1 (Figure 7d,
e), and N-cadherin (Figure 7h, i) were significantly increased in the F-sEVs treatment condition relative to the Vehicle group.
Furthermore, both MSC and F-sEVs treatments resulted in sustained increases in ZO-1 (Figure 7d, e) and occludin (Figure 7f)
protein levels at 70-day post-SCI.

 DISCUSSION

Systemic delivery ofmesenchymal stem/stromal cells has therapeutic effects in experimental models of SCI (Honmou et al., 2012)
and ongoing clinical studies are evaluating MSC therapy in SCI patients (Honmou et al., 2021; Kabat et al., 2020). The results of
this study provide evidence that IV-infusedMSCs, which do not reach the lesion site (Matsushita et al., 2015; Quertainmont et al.,
2012), promote recovery after SCI by releasing sEVs that are taken up by M2 macrophages at the lesion site. Importantly, when
MSC-sEVs were injected in fractionated doses, the therapeutic effect was greater than when the same quantity of MSC-sEVs was
delivered in a single dose. We found that fractioned MSC-sEVs delivery was as therapeutically effective as MSC infusion. The
results of this study suggest a model of action (Figure 8) in which MSC-sEVs uptake by M2-type macrophages at the SCI site
leads to upregulation of TGF-β and stimulates a TGF-β signalling pathway at the lesion that leads to increased expression of key
BSCB-associated proteins, accelerating restoration of BSCB integrity and promotion of functional recovery.
Consistent with our previous findings (Matsushita et al., 2015), we found no detectable engraftment of labelled MSCs at the

lesion site after infusion of a large number of DiR-labeledMSCs 1-week post-SCI. However, manyDiR-labeled “hotspots” stained
with antibodies to the exosomemarker CD63were identified withinM2macrophages at the lesion site, indicating that IV infused
MSCs, previously found to lodge transiently in the lungs (Matsushita et al., 2015), do in fact release sEVs that target M2-type
macrophages at the SCI site.
Previous studies reported therapeutic efficacywith both a high single dose (Huang et al., 2017; Ji et al., 2019) andmultiple dosing

(Lu et al., 2019; Wang et al., 2018) of MSC-sEVs delivered acutely immediately after SCI induction. In the present study, when
treatment withMSC-sEVs was delayed 1-week post-SCI, functional recovery was observed only whenMSC-sEVs were delivered
in fractionated doses over 3 days. The statistically significant improvement in functional recovery after a single infusion ofMSCs,
or fractionated delivery ofMSC-sEVs, but not after infusion of the same quantity ofMSC-sEVs delivered in a single dose, suggests
that the efficacy of IV delivered MSC results from release of sEVs over time. Since MSCs that were IV infused into rats with SCI
were detected within lungs for up to 3 days post-infusion (Matsushita et al., 2015), IV infused MSCs might release sEVs into the
circulation for as long as 3 days post-infusion. Previously, we observed that IV delivery of a large dose of DiR-labeled MSC-sEVs
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F IGURE  Both infusion of MSCs and fractionated MSC-sEVs dosing promote increases of tight and adherens junction proteins. a-c, Graphs showing
qRT-PCR analysis of relative mRNA expression levels of ZO-1 (a), occludin (b), and N-cadherin (c). [ΔCT was calculated against GAPDH control, and ΔΔCT
(mRNA level) was calculated against the ΔCT of the control.] Note significant increases were observed in ZO-1, occludin, and N-cadherin mRNA in both the
MSC and F-sEVs treatment groups relative to the Vehicle groups at 14-day post-SCI. d-i, Representative images of western blots and quantitative density
analysis of the lesion sites harvested at 14- and 70-day post-SCI, showing levels of ZO-1 (d and e), occludin (f and g), and N-cadherin (h and i). Note that levels
ZO-1, occludin, and N-cadherin were all significantly increased in the MSC treated condition and levels of ZO-1 and N-cadherin levels were significantly
increased in the F-sEVs treatment condition relative to the Vehicle treated condition at 14-day post-SCI. Animals in both the MSC and F-sEVs treatment
conditions also showed increases in ZO-1 and occludin protein levels at 70-day post-SCI. Values are presented as means ± SEM. A 1-way ANOVA followed by
the Tukey-Kramer test or the Kruskal-Wallis test followed by the Steel-Dwass test was conducted. *: P < .05, **: P < .01, MSC: mesenchymal stem/stromal cell,
MSC-sEVs: small extracellular vesicles derived fromMSCs, ΔCT: delta-cycle threshold, SCI: spinal cord injury, GAPDH: Glyceraldehyde 3-phosphate
dehydrogenase, FC: fold change
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F IGURE  Schematic representation of the proposed mechanisms underlying the therapeutic effects of MSC-sEVs on the blood-spinal cord barrier
(BSCB) in spinal cord injury. Circulating MSC-sEVs (1◦ MSC-sEVs: blue circles) produced either by release of sEVs from IV infused MSCs trapped in the
lungs or by repeated IV dosing of MSC-sEVs are taken up by M2 macrophages in the lesion. sEVs uptake by M2 macrophages promotes sustained M2
macrophage polarization and increased TGF-β (red squares) production. TGF-β or TGF-β surface expressing second order EVs (2◦ EVs) released by the
MSC-sEV-stimulated M2 macrophages (green circles) bind to TGF-βR2 on endothelial cells and/or pericytes, to complex with TGF-βR1 with thereby enhance
avidity as a surface array to activate downstream pathways, which lead to upregulation of junctional proteins ZO-1, occludin, and N-cadherin contributing to
restoration of BSCB integrity. The restored BSCB provides a more favourable environment for neuronal functioning and promotes greater recovery of
locomotor functioning. MSCs: mesenchymal stem/stromal cells, MSC-sEVs: small extracellular vesicles derived fromMSCs, M2-macs: M2 macrophages, 1◦

MSC-sEVs: first order MSC-sEVs, 2◦ EVs: second order extracellular vesicles released from activated M2 macrophages, TGF-β: transforming growth
factor-beta, TGF-βR1 or 2: transforming growth factor-beta receptor 1 or 2, BSCB: blood spinal cord barrier

resulted in transient appearance of DiR fluorescence within the kidneys at 2–4 h, but not at 24 h, suggesting that MSC-sEVs may
be rapidly cleared from the system (Lankford et al., 2018). These observations suggest that the therapeutic efficacy of MSC-sEVs
for the degree of injury in our severe SCI model may require more prolonged stimulation of the targeted M2 macrophages than
can be achieved by short-term exposure. It is possible that microRNAs transferred to targeted cells via exosomes are quickly
degraded after uptake and exert only short term effects on gene expression unless additional exosomes are taken up. Moreover,
an earlier study revealed that the injured spinal cord environment promotes polarization ofM1 cytotoxicmacrophages, especially
from 7- to 14-day post-SCI, although both M1 and M2 macrophages are present in the lesion (Kigerl et al., 2009). It is plausible
that prolonged stimulation by MSC-sEVs in the injured spinal cord lesion is required for M2 macrophages to stabilize the M2
phenotype or reduce their death. In animals with less severe lesions or earlier timepoints of treatment, a single dose of sEVs may
be efficacious, particularly if the dose is large enough tomaintain reasonably high circulating levels of vesicles even with systemic
clearance.
The observed upregulation of TGF-β1 in SCI lesions at the 3-day timepoint after a single dose of MSC-sEVs (1-sEVs), but

not at the 1-week timepoint for this treatment condition, suggests that short-term exposure to MSC-sEVs may only induce
short lived changes in gene expression. In contrast, the increased expression of TGF-βmRNA and TGF-βR2 protein, as well as
increased levels of BSCB-related mRNA and protein, at 1-week post-treatment in both MSC and F-sEVs groups, argues that a
prolonged presence ofMSC-sEVs can induce sustained changes in gene regulation. Further studies will be necessary to determine
whether extending the treatment period with additional MSC-sEVs injections or osmotic pump delivery may promote even
greater recovery.
Although both MSC and fractionated MSC-sEVs dosing were associated with increased expression of M2 markers at the

lesion site 7 days after treatment, it is not clear how MSC-sEVs affect macrophages. Further in vitro studies will be needed to
understand whether and how sEVs may affect macrophage polarization. Others have reported that MSC-sEVs increased the
percentage of macrophages expressing M2 markers in models of spinal cord ischemia (Sun et al., 2018) and wound healing
(He et al., 2019), suggesting that MSC-sEVs may promote polarization of macrophages to an M2 phenotype. In this study, the
increase in expression of M2 markers relative to M1 markers in both the MSC and F-sEV treatment groups argue that MSC-
sEV uptake may affect macrophage polarity to favour an M2 phenotype. However, we did not observe DiR hotspots outside of
CD206 expressing macrophages in animals infused with DiR-labeled MCSs in this study nor in a prior study (Lankford et al.,
2018). The later study extensively examined spinal cord sections in DiR-labeled sEVs infused animals and failed to identify DiR
fluorescence in any iNOS expressing macrophages within the lesion. Furthermore, our in vitro studies here confirm that MSC-
sEVs are only taken up by cells which had been polarized to an M2 phenotype with IL-4 treatment. Our lack of detection of
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DiR-MSC-sEVswithin cells exhibitingM1markers or restingM0phenotype in vivo or in vitro argues for a preferential receptivity
of some M2-type macrophages for MSC-sEV uptake, rather than an MSC-sEV-induced shift from an M1 or M0 phenotype to
an M2 phenotype. An alternative explanation may be that MSC-sEV uptake stabilizes the M2 phenotype or reduces their death,
resulting in an increase in the relative proportion of M2 macrophages in the lesion.
It is noteworthy that not all CD206 expressing macrophages appeared to take up DiR-MSC-sEVs, either in vivo or in vitro,

implying that expression of this aspect of an M2 phenotype alone is not sufficient for MSC-sEV uptake. It is not clear why DiR-
labeled MSC-sEVs seem to be taken up only by a subset of macrophages expressing M2 markers. We hypothesize that such
exosome uptake may be an active process induced in some M2 macrophages by the SCI environment and reflected in a certain
signature of receptive ligands for binding specific sEVs. Since all cell types produce and release exosomes and these nanovesicle
structures remain stable in a wide range of environments, macrophages may selectively bind and then take up specific subsets
of MSC-derived exosomes only after they have been primed in some way to express a certain surface signature and ‘expect’
congruity from the corresponding surface signature of this particular class of exosomes. Based on our in vitro work, low pH and
the presence of phagocytosis-inducing cell debris, as well as anti-inflammatory cytokines, may be part of this priming process
which causes exposed subsetsM2macrophages versus allmacrophages at the site of the contusive spinal cord lesions to selectively
bind and then take up surface congruent subsets of the MSC-sEVs.
Since low pH is associated with inflammatory environments, the preferential uptake of MSC-sEVs under low pH conditions

versus neutral pH also implies that the likely site of sEV uptake by macrophages is within the lesion itself, rather than sEVs being
taken up by circulating macrophages. This would be consistent with the observations in our previous study (Lankford et al.,
2018), showing that the sizes of the DiR hot spots increased in all DiR containing macrophages at 24 h after DiR-MSC-sEVs
infusion, compared with cells examined 2 h and 4 h post-infusion. If macrophages took up DiR labelled sEVs in the periphery
and ceased accumulation after entering the CNS parenchyma, one would expect macrophages exhibiting a broader range of hot
spot sizes at the later time point, which was not observed. The lack of increase in TGF-β expression in lung, liver, kidney and
spleen afterMSC or sEV infusion further supports the notion that macrophages within the spinal cord lesion site were the targets
of the MSC-derived sEVs.
Themechanism of therapeutic action of sEVs in this model has not yet been fully established.MSC-sEVs are known to contain

a wide range of RNA and protein cargos, including cytokines and microRNAs, which can alter cell function (Ferguson et al.,
2018; Toh et al., 2018). The regulatory microRNA-21 is one of the 10 most highly expressed microRNAs in MSC-sEVs. It is a key
mediator of the anti-inflammatory response in macrophages within tissue (Sheedy, 2015) and we have confirmed the presence
of miR-21 within our MSC-sEVs (Figure 1e). Recent reports found that increased miR-21expression in exosomes from primed
MSCs correlated with increasedM2 polarization in vitro and reduced sepsis in vivo (Yao et al., 2020), while a reduction inmiR-21
expression in exosomes from MSCs derived from obese animals correlates with reduced therapeutic efficacy of MSC-sEVs for
acute SCI (Ji et al., 2019). Taken together, these findings suggest that miR-21 cargos inMSC-sEVs taken up bymacrophages at the
lesion site could play a key role in the therapeutic response. Further experiments using siRNAs are needed to evaluate whether
miR-21 or other specific microRNA cargos may play critical roles in the effects of MSC-sEVs on SCI.
The observation of substantial uptake of MSC-sEVs by M2 macrophages 48 h after MSC infusion argues that uptake of

MSC-sEVs by macrophages is likely responsible for initiating at least some of the therapeutic effects of MSCs. It is well known
that macrophages expressing classic M2 markers play crucial roles in suppressing inflammation by secreting anti-inflammatory
cytokines, including TGF-β (Freytes et al., 2013; Hu et al., 2015), thereby increasing tissue sparing and providing amore conducive
environment for axon regeneration and neuronal functioning after SCI (Hu et al., 2015; Nakajima et al., 2012). In the present
study, MSC and F-sEV treatment not only resulted in increased expression of M2 specific markers but also increases in TGF-β
mRNA and protein. These findings are consistent with reports that MSC-sEVs induce high levels of anti-inflammatory TGF-
β transcripts in monocyte lineage cells in vitro and modulate immunological activities related to graft rejection with repeated
injections in vivo (Zhang et al., 2014) and argue that uptake of MSC-sEVs by macrophages may directly result in increased
TGF-β production by these cells. Although other cells, including neurons and astrocytes, can produce TGF-β, we did not detect
differences in TGF-β staining in those cells between the different experimental groups. Further in vitro studies are planned to
investigate whether MSC-sEVs or MSC-sEV treated macrophages alter TGF-β production in astrocytes or other potential CNS
targets.
Further investigations of tissue responses to treatments indicated thatMSCandF-sEVs infusions resulted in changes consistent

with the targeting of the microvasculature. Both MSC and F-sEVs infusions resulted in overall increases in TGF-β receptor
expression in the lesion and an apparent increase in TGF-β receptor 2 staining of the microvasculature. Furthermore, expression
of the BSCB proteins ZO-1, occludin, andN-cadherin and their mRNAs were increased and BSCB leakage was reduced following
MSC and F-sEV treatment. Since DiR-MSC-sEVs were not detected within endothelial cells or pericytes, the microvasculature
may be an indirect target of MSC-sEV action, with increased production of TGF-β (presumably by macrophages which take up
MSC-derived exosomes) stimulating changes in endothelial cells and pericytes (Shelke et al., 2019; Wada et al., 2010). However,
since individual sEVs are below the detection threshold for our imaging, we cannot rule out the possibility that MSC-sEVs may
have been directly taken up by endothelial cells or pericytes at levels too low to detect. Alternatively, according to the study by
Shelke et al. (2019), it is possible that the primary targeted M2 macrophages go on to produce secondary extracellular vesicles



NAKAZAKI et al.  of 

which stimulate the neighboring microvasculature to induce synthesis of the downstream microvascular proteins we observed
(Figure 8).

The molecular mechanism for TGF-β influence on the BSCB is yet to be elucidated. Initially, TGF-β binds to TGF-βR2 dimers
and activates the intracellular kinase domain of TGF-βR1, initiating phosphorylation cascades in both SMAD (Heldin et al.,
1997; Massague, 1996) and SMAD-independent signalling pathways. The SMAD independent pathways include PI3K mediated
phosphorylation of AKT (Lamouille & Derynck, 2007; Qureshi et al., 2007; Zhang et al., 2013) which promotes transcription of
many gene products (Seoane et al., 2004), some of which play key roles in regulating tight junction proteins in the CNS (Li et al.,
2015; Sun et al., 2019). Further analysis will be necessary to assess which downstream SMAD or non-SMAD pathways may be
responsible for the observed changes in tight junction and adherens junction proteins.
The results from this study indicate that sEVs are released by IV delivered MSCs and have a role in their therapeutic action in

SCI. Our data support a model of action in which exosomes released by MSCs into the general circulation are taken up by M2
macrophages at the lesion site stimulating them to increase the production of TGF-β, which in turn upregulates TGF-β receptors
on pericytes or endothelial cells and induces a cascade of molecular responses leading to repair of the microvasculature and
restoration of BSCB integrity. This restoration of the BSCB provides an environment more conducive to neuronal repair and
improved function (Figure 8). Clinical studies using MSC therapy for SCI (Kabat et al., 2020) and stroke (Honmou et al., 2011)
have established safety andwe are evaluating the efficacy in an ongoing clinical study (Honmou et al., 2021).While a single dose of
MSCs has been shown to be therapeutic in experimental models of SCI and stroke, the data presented here suggest that multiple
dosing protocols may be necessary for optimal clinical efficacy using MSC-sEVs. Unlike MSCs which could pose a risk of lung
emboli with multiple dosing, the small size and clearance of excess MSC-sEVs suggest that multiple dosing of MSC-sEVs would
be safer. sEVs are more stable and storable than living cells (Sokolova et al., 2011), thus allowing greater flexibility in treatment
protocols.

 CONCLUSION

Intravenously infused MSCs release sEVs in vivo over time and target M2 macrophages to increase TGF-β and induce TGF-
β signalling pathways to mediate therapeutic effects in SCI. Intravenous delivery of MSC-sEVs may represent an important
noncellular therapeutic approach for SCI treatment.
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